Experimental and first-principles study of point defects, domain walls, and point-defect/domain-wall interactions in ferroelectric oxides
نویسنده
چکیده
Ferroelectric oxides, such as lead zirconate titanate, have proved invaluable due to their excellent dielectric and piezoelectric properties. These classes of materials possess a large electric polarization below the Curie temperature. Regions of the crystal lattice having different directions of polarization are separated by nano-scale interfaces known as domainwalls. These interfaces, which can be moved by electric and mechanical fields, are not only important for electromechanical properties but they also exhibit unique structural and electronic properties that may be exploited through novel application in nanoelectronics and photovoltaics. The mobility of domain walls is strongly dependent on the defect chemistry of the material due to defect-domain wall interactions. Indeed, aliovalent doping of these materials has been used to tune the properties of ferroelectric oxides for specific applications. In this work, we investigate the origin of the so-called “hard” and “soft” behavior in lead zirconate titanate. Experimental evidence suggests that small concentrations of donor dopants (such as niobium) results in enhanced domain wall motion while doping with acceptor dopants (such as iron) leads to an inhibited domain wall response. The microscopic origin of this phenomena is best investigated using first-principles simulations of the atomistic properties of defects and domain wall in these materials to bring to light novel structural and electronic properties. First, we show that polar defect complexes are likely to exist in both acceptor-doped and undoped PbTiO3. These defects and defect associates are attracted to 180o domain walls and cause pinning of such interfaces. Donordoped materials, on the other hand, do not show the presence of polar defect complexes. A closer investigation of the 180o domain wall in PbTiO3 reveals the presence of a “Bloch” component of polarization at the domainwall. In other words, due to polarization rotation, there exists a ferroelectric phasewithin the domain wall itself. We characterize the strain dependence of this phenomena and calculate the piezoelectric properties of such domain walls. A complete study of domain walls in PbTiO3 also entails looking closer at the properties of the ferroelastic “head-to-tail” 90o domain boundary. We show the presence of an asymmetry in the variation of the lattice parameter across the domain wall. This asymmetry is verified using high resolution aberration corrected electronmicroscopy. We look at the energy landscape of oxygen vacancies in the vicinity of these walls to explain the pinning effect in terms of random-bond and random-field defects. Next we look at the electronic properties of the recently discovered charged domain walls. We characterize the band bending phenomena in 90o head-to-head and tail-to-tail domain wall in PbTiO3. We then look at the long range effects of clusters of oxygen vacancies in BaTiO3;
منابع مشابه
Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films
Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shap...
متن کاملIntrinsic ferroelectric switching from first principles.
The existence of domain walls, which separate regions of different polarization, can influence the dielectric, piezoelectric, pyroelectric and electronic properties of ferroelectric materials. In particular, domain-wall motion is crucial for polarization switching, which is characterized by the hysteresis loop that is a signature feature of ferroelectric materials. Experimentally, the observed ...
متن کاملInterstitial oxygen as a source of p-type conductivity in hexagonal manganites
Hexagonal manganites, h-RMnO3 (R=Sc, Y, Ho-Lu), have been intensively studied for their multiferroic properties, magnetoelectric coupling, topological defects and electrically conducting domain walls. Although point defects strongly affect the conductivity of transition metal oxides, the defect chemistry of h-RMnO3 has received little attention. We use a combination of experiments and first pri...
متن کاملOptical Filter Based On Point Defects in 2D Photonic Crystal Structur
In this paper, we proposed a novel structure for designing all optical filter based on photonic crystal structure. In designing the proposed filter, we simply employed a point defect localized between input and output waveguides as wavelength selecting part of the filter. The initial form of this filter is capable of selecting optical waves at =1560 nm, the transmission efficiency of the filte...
متن کاملFirst-principles investigation of 180° domain walls in BaTiO3
We present a first-principles study of 180° ferroelectric domain walls in tetragonal barium titanate. The theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoftpseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We compute the domain-wall energy, free energy, and thickness, analyze the beha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016